The figure represents a typical Atwood's Machine in which two masses are connected by a light string and then suspend over a massless, frictionless pulley. Complete each of the indicated steps to derive an equation that represents the predicted acceleration of the system.

1. Consider each mass as a separate object and draw a free body diagram for each. Note that all forces act in the y-direction.
Free Body Diagrams $\quad \mathbf{m}_{1} \quad \mathbf{m}_{2}$
2. Write $\sum F_{y}=m a_{y}$ for each of the masses to obtain two linear equations that include the acceleration of each mass.
$m_{1}:$
m_{2} :
3. Solve the resulting system of linear equations to obtain a predicted value for a_{y}. Note that the masses are constrained to move together so $\left|a_{1 y}\right|=\left|a_{2 y}\right|=\left|a_{y}\right|$.
