Lab #4, Newton's 2nd Law

The figure represents a typical Atwood's Machine in which two masses are connected by a light string and then suspend over a massless, frictionless pulley. Complete each of the indicated steps to derive an equation that represents the predicted acceleration of the system.

1. Consider each mass as a separate object and draw a free body diagram for each. Note that all forces act in the *y*-direction.

Free Body Diagrams	\mathbf{m}_1	m ₂	

2. Write $\sum F_y = ma_y$ for each of the masses to obtain two linear equations that include the acceleration of each mass.

*m*₁:

*m*₂:

3. Solve the resulting system of linear equations to obtain a predicted value for a_y . Note that the masses are constrained to move together so $|a_{1y}| = |a_{2y}| = |a_y|$.